CPSC 448 - Report— Adam Mais

This report details the design, development, and key learnings from a proof-of-concept project to create
Ulti-Quest, a full-stack Question Bank Management System (QBMS). The system is designed to import,
manage, and render educational assessment questions originally created for the PrairieLearn platform.
The project's central technical achievement is a hybrid rendering engine that interoperates between
Node.js and Python to process PrairieLearn's custom HTML elements. The development process was
executed in stages, progressively adding features such as a user-friendly zip file import pipeline,
integration with an external Al-powered tagging service, and an evolution of the data model from a linear
to a hierarchical tag structure. This report is divided into two primary sections: a detailed account of the
work completed ("What | Did") and a reflection on the knowledge acquired throughout the project ("What
| Learned").

What | Did

Over the course of this project, | developed a full-stack web application from the ground up, evolving it
through two stages of functionality and complexity. The technology stack chosen was the MERN stack:
MongoDB for the database, Express.js for the backend framework, React for the client-side user
interface, and Node.js for the server runtime environment.

Stage 1: Foundational QBMS with Linear Tagging

The initial phase of the project focused on building the core infrastructure and establishing the baseline
features required for a functional question bank.

Initial Data Population: To populate the system with an initial dataset, | developed a web scraper using
Python and the Selenium library. This script was engineered to navigate to a live PrairieLearn course,
authenticate by leveraging an existing browser session to bypass the need for programmatic login, and
systematically extract essential question metadata. This included each question's unique ID, title, topic,
URL, and its native PrairieLearn tags. The collected data was then serialized into a JSON file, which was
manually imported into the MongoDB database to serve as the application's initial content.

Core Web Application: With a dataset in place, | constructed the initial client-server application. The
Node.js backend exposed a RESTful API to query the question collection in MongoDB. The React frontend
consumed this API to fetch and display a filterable list of all questions, providing a simple interface for
browsing the available content.

Linear Tag Management: The first version of the custom tagging system was implemented. This feature
empowered users to create, edit, and delete their own text-based tags and associate them with one or
more questions. In this initial stage, the tags were represented in a simple linear structure - essentially an
array of strings associated with each question document. This provided a layer of organization on top of
the pre-existing PrairieLearn tags.

Filtering and Search: To make the question bank useful, | implemented a multi-faceted filtering system.
The user interface included controls that allowed users to search and narrow down the question list

CPSC 448 - Report— Adam Mais
based on a combination of criteria, including question ID, title, PrairieLearn-native tags, and the newly
implemented custom tags.

Foundational QBMS with Linear Tagging

Filters Results
Filter by QID ID: 202352/finalExam/dataAbstractionWarehouseMap []
Title: Working with Mapsasdf
Filter by Title Topic: Construction
PL Tags: A1, A2 A3, C7
Filter by Topic L cusiom tag 1 < | custom a5 < |
ID: 202352/finalExam/greyScaleColourlterator
Title: The Iterator Pattern
Tags PL Tags Topic: Design
custom_tag_1 - ; PL Tags: D8, exam
custom_tag_2 21s2 .
custom_tag 3 I 21s2-final Tags:
custom_tag_4 21s2-quiz1
custom_tag_5 o 21s2-quiz2 o
. i ID: 2023S2/finalExam/iterator
@ Match All Tags (AND) O Match Any Tag (OR)
Title: Working with Iterators
Enter new tag Topic: Design
PL Tags: D7, exam
Remove Tag(s)
Select exactly one tag to rename
ID: 202352/finalExam/javaPackagesComposite
Title: The Composite Pattern
Topic: Design
PL Tags: D4, exam
Tags: Select tag.. ~ New tag. m
custom_tag_1
ID: 202352/f custom_tag_2 ver
Title: The Q| c¥stem_tag_3
i .| custom_tag_4
Topic: Desig
custom_tag_5
PL Tags: DI cystom tag_6
Tags:
ID: 2023S2/finalExam/liskov
Title: Liskov Substitution Principle
Topic: Design
PL Tags: D2, exam
Tane- [2| v

Stage 2: Advanced Rendering Pipeline and Hierarchical Tagging

The goal was to transform the system from a simple metadata manager into a system capable of
rendering the full content of PrairieLearn questions, which was a non-trivial challenge. This stage of the
project was completed with the assistance of the Al coding tool, Cursor.

The Hybrid Rendering Engine: The core challenge was rendering PrairieLearn's custom HTML tags in a
standard browser. Instead of rewriting the platform's logic, | developed a hybrid rendering engine that
uses the Node.js backend to orchestrate the execution of PrairieLearn's original Python scripts. This
"emulation via orchestration" approach formed the technical heart of the project.

e File Storage: A critical prerequisite was a robust file storage strategy. Upon import, each
question's files are separated into two locations. All original source files, including server-side

https://cursor.com/

CPSC 448 - Report— Adam Mais
logic, are stored in a private server/question_source directory. Correspondingly, any client-facing

assets like images are copied to a server/public/question_assets directory, making them web-

accessible. This separation mirrors PrairieLearn's security model, ensuring server code is never

exposed.

e Multi-Stage Rendering: The rendering process is a carefully sequenced pipeline, managed by a
Node.js orchestrator that communicates with Python scripts via a custom bridge using JSON over
standard I/0. At a high level, the steps are as follows:

1. Data Generation: The process begins by executing the question's generate script to produce
the initial data and parameters.

2. Templating: This data is then used with a Mustache template to render the question's base
HTML structure.

3. Pre-processing: The resulting HTML is scanned for any markdown content, which is converted
into standard HTML.

4. Element Preparation: The pipeline performs a bottom-up traversal of the HTML. For each
custom <pl-*> element it finds, it executes a prepare function, which allows child elements to
register data before their parents are processed.

5. Iterative Rendering: Next, an iterative top-down render phase begins. In a loop, the system
finds all remaining custom <pl-*> elements and executes their render functions, replacing
them with standard HTML. This loop continues until no custom elements are left, which
correctly handles cases where elements render other elements.

6. Finalization: The final HTML string is then saved to the database, ready to be served to a user.

Zip File Import: To streamline the process of adding new questions, the manual data loading process
was replaced with a user-friendly zip file uploader. This feature, implemented in the
client/src/components/ZipUploader.js React component, leverages the JSZip library to process .zip files
directly in the browser. The client-side logic unzips the archive, identifies the constituent files for each
question, handles binary assets like images by Base64 encoding them, and constructs a structured JSON
payload for each question to be sent to the backend. This approach significantly improves the user
experience and reduces server-side load.

Al Tagger Integration: A specific step in the question rendering process was designated to pass an
intermediate HTML representation of each question to an external Al tagging service endpoint. This
allowed for the integration of automatic tag generation as part of the question import workflow.

Hierarchical Tagging: The data model for tags was upgraded from a linear list to a tree structure. This
allowed for the creation of parent-child relationships between tags, enabling a much more granular and
logical categorization of questions (e.g., Computer Science > Data Structures - Trees > Binary Search
Trees).

CPSC 448 - Report— Adam Mais

QBMS with hierarchical tagging, question upload, and question visualization

UttiQuest - Tree

Filters Results

Filter by QID ID: midterm2/equalsinheritance

Title: Equals & Inheritance (Rectangles & Shapes)

Topic: Construction
PL Tags: A6, A7, C7, 23w2, 23w2-midterm2

Filter by Title

Filter by Topic QE(EH Software Engineering X | Abstraction XX | Multiple Interfaces)X | Types and Interfaces X

Basics I Classes, Objects and Variables I Conditions, Loops, Execution Flow and Flowcharts ~

Hide Tags Data Flow IMelhods, Calls, and Call Graphs ~ I Program Structure < IDasign X IPamems X

Composite Pattern X IJava's Observer (Deprecated) ~ IOhsenrer Pattern X Singleton Pattern .~
Principles * Liskov Substitution Principle X
PL Tags
:
23w2 =
23w2-midterm2 l
A4
A5 ID: midterm2/exceptionHandlingControlFlow
AB
a7 4 Title: Exception Handling (How would we code this?)
Topic: Construction
Tags

PL Tags: C1, C2, 23w2, 23w2-midterm2

Add Root Nods o 5ot Ensineering < | Abswracion <
ew | [Delete
v [Software Engineering o

» [Basics
» [Abstraction
» [Construction

ID: midterm2/exceptionTestingCoinCollection

Title: Exception Handling Coding (Coin Collection)

v [Design
» 1 Principles Topic: Construction
v [Patterns PL Tags: C1, C2, C3, workspace, auto-graded, 23w2, 23w2-midterm2

% Composite Pattern
- . - Tags: Software Engineering X 2 Types and Interfaces X
Selected: None

Classes, Objects and Variables ¥ &Candiﬁnﬂs, Loops, Execution Flow and Flowcharts

Methods, Calls, and Call Graphs .~ Program Structure <

Composite Pattern X Principles Refactoring < -

Match All Tags Match Any Tag
(AND) (OR)

UltiQuest - Tree

Upload a .zip file containing questions

Choose File midterm2.zip

Clear Upload

Preview of Parsed Questions:

Equals & Inheritance (Rectangles & Shapes) — Topic: Construction, PL Tags: [A6, A7, C7, 23w2, 23w2-midterm2]
Path: midterm2/equalsinheritance

Exception Handling (How would we code this?) — Topic: Construction, PL Tags: [C1, C2, 23w2, 23w2-midterm2]
Path: midterm2/exceptionHandlingControlFlow

Exception Handling Coding (Coin Collection) — Topic: Construction, PL Tags: [C1, C2, C3, workspace, auto-graded,
23w2, 23w2-midterm2]
Path: midterm2/exceptionTestingCoinCollection

Type Hierarchies & Class Diagrams — Topic: Abstraction, PL Tags: [A4, A5, C4, 23w2, 23w2-midterm2]

Path: midterm2/typeHierarchiesClassDiagrams

Import 4 Questions

CPSC 448 - Report— Adam Mais

Exception Handling (How would we code this?) X

Note: For multiple-choice question parts, make sure to always select at least one option. There is always at least
one correct option. If you do not select at least one option for each part, it will result in a score of 0 on this
question!

Imagine we have the following exception hierarchy:

©Cannot8tudyException

©FeelingSickExcepti0n ©UnfocusedExce ption ©BetterThingsToDoExceplion

il N

©RunnyNoseExcepti0n ©HeadacheExcepti0n ©FeverExcepti0n

Now imagine we have this method:

private void study() throws CannotStudyException {
// IMPLEMENTATION OMITTED

}

Plus, we have the following method which wants to call the method above:

public void execute(int times) {
for (int i = @; i < times; i++) {
try {
/7 [1]
YL /7 [2]

YL /7 [4]
) L /7 [e]
) L /7 [8]

Section 2: What | Learned

Ul/UX Design with Figma: | learned the fundamentals of Ul design by creating mock-ups for the
application in Figma. This involved designing interfaces for both the hierarchical tag structure and a
conceptual knowledge graph view. While these were primarily for planning and conceptualization, the
process taught me the basics of using Figma to visualize user interfaces and product features.

CPSC 448 - Report— Adam Mais

Figma design for a QBMS with tags represented in a tree structure:

® UltiQuest B crecro O
Results

Explore... ID: 202352 ffinalExam/dataAbstractionWarehouseMap
Title: Working with Maps

Filter by ID Taopic: Construction

PL Tags: A1, A2, A3, C7

Tags: +

Filter by Title

Filter by Topic
ID: 202352 finalExam/dataAbstractionWarehouseMap

Title: Working with Maps
Topic: Construction

PL Tags: A1, A2, A3, C7

Toos: QDD +

ID: 202352/finalExam/dataAbstractionWarshouseMap

Title: Working with Maps
Add Root Tag +

~ [Design Pattern +7 80 Topic: Construction

O Observer PL Tags: A1, A2, A3, C7
O nerator Tags: +
O Factory

D Jeva

[security ID: 202352 finalExam/dataAbstractionWarehouseMap

Title: Warking with Maps
() Match all tags (AND) (8) Match any tags (OR) Topic: Construction

PL Tags: A1, A2, A3, C7

Tags: +

ID: 202352/finalExam/dataAbstractionWarehouseMap

. UItiQuest Explore Questions '_) CPSC 210 ‘g\

Upload ZIP file

Generate Tags with Al
Assign Tags to Questions with Al

Replace Existing Questions

Generate Questions

CPSC 448 - Report— Adam Mais

Figma design for a QBMS with tags represented in a knowledge graph:

Project A

L P
Add data to the KG (upload files) \]
4 {

History L Y g

9:52 pm - Generated tripies from data source file.txt" Revert tl
5:40 pm = Added new node trars’ Rovert Financial Services (OBJECT) X
9:30 pm - Edited existing relationship ‘asdf’ Revert

Neighbours | Relationships | Edges

(edit)
Node Property 1
Node Property 2
Node Property 3

adammais10@gmail.com
sign out

Add Project +

X

Project A - Last Edited 2025-03-24 @ 10:00 pm

x\
Project B - Last Edited 2025-03-24 @ 9:54 pm

X
Project C - Last Edited 2025-03-23 @ 9:54 pm

X

Project B - Last Edited 2025-01-24 @ 10:01 am

o
(]

CPSC 448 -

Report— Adam Mais

Al-Assisted Development Workflow: | learned a structured workflow for collaborating with the Al coding

assistant, Cursor.

1. Context Priming: | provided the LLM with project goals, documentation, and the codebase, then

prompted it to ask clarifying questions to resolve ambiguities and establish a shared understanding.

a.

Example Prompt: “Act as an expert developer in creating conversion tools between similar
computer programming languages. You will help me build a way to convert html documents
that contain custom elements into their vanilla html equivalent. The originals will be
questions as rendered by PrairieLearn (please see @PrairieLearn for a full reference of the
potential customs tags). As an example in @original.htm! we have a PrairieLearn question
about Java class declarations, which when rendered in a browser looks like what you see in
@rendered.html. Our task is to create a way that we can convert questions into their
counterparts automatically. The questions are uploaded as a zip file by a user in my webapp.
You will find the code for the webapp in @/qbms. The code that contains functionality for
uploading the zip file of questions is in @ZipUploader.jsx. Currently, the zip uploader finds
the associated info.json file for each question and extracts the relavent meta-data - it does
not extract the question.html containing the content of the question. | want the zip uploader
to extract the content of the question.html files and store them in a database entry for that
question. For reference zip uploader currently calls an endpoint
'http://localhost:3001/questions/upload’ which is created in the backend part of the
application in @question.js. Before we write code, we will need to form a plan of how we will
tackle this task. What questions do you have to which the answers | provide will give you the
best possible chance of success in this task?”

2. Collaborative Planning: We then jointly created a high-level plan that was broken down into a

granular, markdown-based task list to serve as a clear roadmap.

3. lterative and Supervised Execution: The Al completed one task at a time, after which | would pause

to review, test, and verify the changes before proceeding. This tight feedback loop ensured quality

and control.

4. Context Handoff: As an LLM nears its context limit, answer quality declines sharply, so it’s best to
switch models before the drop-off. At the bottom of each chat, Cursor shows how much context
has been used up in the form of a percentage. You should ask the old LLM to generate a prompt to

provide the new LLM with context of your task.

a.

Example Prompt: “Now act as an expert prompt engineer. Help me write a prompt for
another language model which will be helping me to complete the tasks in @conversion-
plan-tasks.md. The other LLM will have ZERO context of this project so we'll need to describe
what we're doing, what we've already established, what files are useful to look at, what
questions the LLM should ask me to help glean its own context etc.”

Web Scraping and Automation: | refined my web scraping skills with Selenium. A key technical learning

was how to bypass programmatic authentication by instructing Selenium to use an existing browser

profile that already had an active, authenticated session. This works because the browser instance

http://localhost:3001/questions/upload

CPSC 448 - Report— Adam Mais
launched by Selenium inherits all the cookies and session data from the specified profile, making the

website believe it is being accessed by a logged-in user.

Full-Stack Development (MERN Stack): | gained extensive, hands-on experience in building a complete
web application. This involved not only mastering the individual components of the MERN stack but
understanding how they integrate. | designed and implemented a RESTful APl with Node.js and Express,
managed complex application state and lifecycle events in a React single-page application, and modeled
and interacted with data in a NoSQL database (MongoDB).

Complex System Architecture & Interoperability: The most valuable lesson came from designing the
hybrid Node.js/Python rendering engine. This task taught me how to architect a solution where two
disparate technology stacks collaborate to perform a single, complex task. It was a practical exercise in
interoperability, requiring the use of child processes for execution and the definition of a strict, JSON-
based data contract for communication over stdio. This pattern is highly relevant to building modern
microservices-based applications, where different services written in different languages must
communicate reliably.

API Design for Bulk Operations: | researched and came to understand the trade-offs in designing APIs
for bulk data processing. | analyzed the two approaches: a single endpoint that accepts a batch of items
versus an endpoint that accepts one item at a time, called multiple times. While the latter offers granular
progress feedback, it is inefficient due to the overhead of repeated HTTP requests. Through this analysis, |
learned that the industry standard solution is the asynchronous job pattern. In this model, the client
makes a single request to a job-creation endpoint, which immediately returns a jobld. The server
performs the long-running task in the background. The client then polls a separate status endpoint using
the jobld to get progress updates. This provides the best of both worlds: the network efficiency of a single
request and the responsive user experience of granular feedback.

