
CPSC 448 – Report – Adam Mais 
 

This report details the design, development, and key learnings from a proof-of-concept project to create 
Ulti-Quest, a full-stack Question Bank Management System (QBMS). The system is designed to import, 
manage, and render educational assessment questions originally created for the PrairieLearn platform. 
The project's central technical achievement is a hybrid rendering engine that interoperates between 
Node.js and Python to process PrairieLearn's custom HTML elements. The development process was 
executed in stages, progressively adding features such as a user-friendly zip file import pipeline, 
integration with an external AI-powered tagging service, and an evolution of the data model from a linear 
to a hierarchical tag structure. This report is divided into two primary sections: a detailed account of the 
work completed ("What I Did") and a reflection on the knowledge acquired throughout the project ("What 
I Learned"). 

What I Did 
Over the course of this project, I developed a full-stack web application from the ground up, evolving it 
through two stages of functionality and complexity. The technology stack chosen was the MERN stack: 
MongoDB for the database, Express.js for the backend framework, React for the client-side user 
interface, and Node.js for the server runtime environment.  

Stage 1: Foundational QBMS with Linear Tagging 
The initial phase of the project focused on building the core infrastructure and establishing the baseline 
features required for a functional question bank. 

Initial Data Population: To populate the system with an initial dataset, I developed a web scraper using 
Python and the Selenium library. This script was engineered to navigate to a live PrairieLearn course, 
authenticate by leveraging an existing browser session to bypass the need for programmatic login, and 
systematically extract essential question metadata. This included each question's unique ID, title, topic, 
URL, and its native PrairieLearn tags. The collected data was then serialized into a JSON file, which was 
manually imported into the MongoDB database to serve as the application's initial content. 

Core Web Application: With a dataset in place, I constructed the initial client-server application. The 
Node.js backend exposed a RESTful API to query the question collection in MongoDB. The React frontend 
consumed this API to fetch and display a filterable list of all questions, providing a simple interface for 
browsing the available content. 

Linear Tag Management: The first version of the custom tagging system was implemented. This feature 
empowered users to create, edit, and delete their own text-based tags and associate them with one or 
more questions. In this initial stage, the tags were represented in a simple linear structure - essentially an 
array of strings associated with each question document. This provided a layer of organization on top of 
the pre-existing PrairieLearn tags. 

Filtering and Search: To make the question bank useful, I implemented a multi-faceted filtering system. 
The user interface included controls that allowed users to search and narrow down the question list 
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based on a combination of criteria, including question ID, title, PrairieLearn-native tags, and the newly 
implemented custom tags. 

Foundational QBMS with Linear Tagging 

 

Stage 2: Advanced Rendering Pipeline and Hierarchical Tagging 
The goal was to transform the system from a simple metadata manager into a system capable of 
rendering the full content of PrairieLearn questions, which was a non-trivial challenge. This stage of the 
project was completed with the assistance of the AI coding tool, Cursor. 

The Hybrid Rendering Engine: The core challenge was rendering PrairieLearn's custom HTML tags in a 
standard browser. Instead of rewriting the platform's logic, I developed a hybrid rendering engine that 
uses the Node.js backend to orchestrate the execution of PrairieLearn's original Python scripts. This 
"emulation via orchestration" approach formed the technical heart of the project. 

• File Storage: A critical prerequisite was a robust file storage strategy. Upon import, each 
question's files are separated into two locations. All original source files, including server-side 

https://cursor.com/
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logic, are stored in a private server/question_source directory. Correspondingly, any client-facing 
assets like images are copied to a server/public/question_assets directory, making them web-
accessible. This separation mirrors PrairieLearn's security model, ensuring server code is never 
exposed. 

• Multi-Stage Rendering: The rendering process is a carefully sequenced pipeline, managed by a 
Node.js orchestrator that communicates with Python scripts via a custom bridge using JSON over 
standard I/O. At a high level, the steps are as follows: 
1. Data Generation: The process begins by executing the question's generate script to produce 

the initial data and parameters. 
2. Templating: This data is then used with a Mustache template to render the question's base 

HTML structure. 
3. Pre-processing: The resulting HTML is scanned for any markdown content, which is converted 

into standard HTML. 
4. Element Preparation: The pipeline performs a bottom-up traversal of the HTML. For each 

custom <pl-*> element it finds, it executes a prepare function, which allows child elements to 
register data before their parents are processed. 

5. Iterative Rendering: Next, an iterative top-down render phase begins. In a loop, the system 
finds all remaining custom <pl-*> elements and executes their render functions, replacing 
them with standard HTML. This loop continues until no custom elements are left, which 
correctly handles cases where elements render other elements. 

6. Finalization: The final HTML string is then saved to the database, ready to be served to a user. 

Zip File Import: To streamline the process of adding new questions, the manual data loading process 
was replaced with a user-friendly zip file uploader. This feature, implemented in the 
client/src/components/ZipUploader.js React component, leverages the JSZip library to process .zip files 
directly in the browser. The client-side logic unzips the archive, identifies the constituent files for each 
question, handles binary assets like images by Base64 encoding them, and constructs a structured JSON 
payload for each question to be sent to the backend. This approach significantly improves the user 
experience and reduces server-side load. 

AI Tagger Integration: A specific step in the question rendering process was designated to pass an 
intermediate HTML representation of each question to an external AI tagging service endpoint. This 
allowed for the integration of automatic tag generation as part of the question import workflow. 

Hierarchical Tagging: The data model for tags was upgraded from a linear list to a tree structure. This 
allowed for the creation of parent-child relationships between tags, enabling a much more granular and 
logical categorization of questions (e.g., Computer Science → Data Structures → Trees → Binary Search 
Trees). 
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QBMS with hierarchical tagging, question upload, and question visualization  
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Section 2: What I Learned 
UI/UX Design with Figma: I learned the fundamentals of UI design by creating mock-ups for the 
application in Figma. This involved designing interfaces for both the hierarchical tag structure and a 
conceptual knowledge graph view. While these were primarily for planning and conceptualization, the 
process taught me the basics of using Figma to visualize user interfaces and product features. 
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Figma design for a QBMS with tags represented in a tree structure: 
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Figma design for a QBMS with tags represented in a knowledge graph: 
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AI-Assisted Development Workflow: I learned a structured workflow for collaborating with the AI coding 
assistant, Cursor. 

1. Context Priming: I provided the LLM with project goals, documentation, and the codebase, then 
prompted it to ask clarifying questions to resolve ambiguities and establish a shared understanding. 

a. Example Prompt: “Act as an expert developer in creating conversion tools between similar 
computer programming languages. You will help me build a way to convert html documents 
that contain custom elements into their vanilla html equivalent. The originals will be 
questions as rendered by PrairieLearn (please see @PrairieLearn for a full reference of the 
potential customs tags). As an example in @original.html we have a PrairieLearn question 
about Java class declarations, which when rendered in a browser looks like what you see in 
@rendered.html. Our task is to create a way that we can convert questions into their 
counterparts automatically. The questions are uploaded as a zip file by a user in my webapp. 
You will find the code for the webapp in @/qbms. The code that contains functionality for 
uploading the zip file of questions is in @ZipUploader.jsx. Currently, the zip uploader finds 
the associated info.json file for each question and extracts the relavent meta-data - it does 
not extract the question.html containing the content of the question. I want the zip uploader 
to extract the content of the question.html files and store them in a database entry for that 
question. For reference zip uploader currently calls an endpoint 
'http://localhost:3001/questions/upload' which is created in the backend part of the 
application in @question.js. Before we write code, we will need to form a plan of how we will 
tackle this task. What questions do you have to which the answers I provide will give you the 
best possible chance of success in this task?” 

2. Collaborative Planning: We then jointly created a high-level plan that was broken down into a 
granular, markdown-based task list to serve as a clear roadmap. 

3. Iterative and Supervised Execution: The AI completed one task at a time, after which I would pause 
to review, test, and verify the changes before proceeding. This tight feedback loop ensured quality 
and control. 

4. Context Handoff: As an LLM nears its context limit, answer quality declines sharply, so it’s best to 
switch models before the drop-off. At the bottom of each chat, Cursor shows how much context 
has been used up in the form of a percentage. You should ask the old LLM to generate a prompt to 
provide the new LLM with context of your task. 

a. Example Prompt: “Now act as an expert prompt engineer. Help me write a prompt for 
another language model which will be helping me to complete the tasks in @conversion-
plan-tasks.md. The other LLM will have ZERO context of this project so we'll need to describe 
what we're doing, what we've already established, what files are useful to look at, what 
questions the LLM should ask me to help glean its own context etc.” 

Web Scraping and Automation: I refined my web scraping skills with Selenium. A key technical learning 
was how to bypass programmatic authentication by instructing Selenium to use an existing browser 
profile that already had an active, authenticated session. This works because the browser instance 

http://localhost:3001/questions/upload
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launched by Selenium inherits all the cookies and session data from the specified profile, making the 
website believe it is being accessed by a logged-in user. 

Full-Stack Development (MERN Stack): I gained extensive, hands-on experience in building a complete 
web application. This involved not only mastering the individual components of the MERN stack but 
understanding how they integrate. I designed and implemented a RESTful API with Node.js and Express, 
managed complex application state and lifecycle events in a React single-page application, and modeled 
and interacted with data in a NoSQL database (MongoDB). 

Complex System Architecture & Interoperability: The most valuable lesson came from designing the 
hybrid Node.js/Python rendering engine. This task taught me how to architect a solution where two 
disparate technology stacks collaborate to perform a single, complex task. It was a practical exercise in 
interoperability, requiring the use of child processes for execution and the definition of a strict, JSON-
based data contract for communication over stdio. This pattern is highly relevant to building modern 
microservices-based applications, where different services written in different languages must 
communicate reliably. 

API Design for Bulk Operations: I researched and came to understand the trade-offs in designing APIs 
for bulk data processing. I analyzed the two approaches: a single endpoint that accepts a batch of items 
versus an endpoint that accepts one item at a time, called multiple times. While the latter offers granular 
progress feedback, it is inefficient due to the overhead of repeated HTTP requests. Through this analysis, I 
learned that the industry standard solution is the asynchronous job pattern. In this model, the client 
makes a single request to a job-creation endpoint, which immediately returns a jobId. The server 
performs the long-running task in the background. The client then polls a separate status endpoint using 
the jobId to get progress updates. This provides the best of both worlds: the network efficiency of a single 
request and the responsive user experience of granular feedback. 


